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ABSTRACT

Recommender systems (RSs) are increasingly being used to help
in all sorts of software engineering tasks, including modelling.
However, building a RS for a modelling notation is costly. This
is especially detrimental for development paradigms that rely on
domain-specific languages (DSLs), like model-driven engineering
and lowcode approaches.

To alleviate this problem, we propose a DSL called Droid
that facilitates the configuration and creation of RSs for partic-
ular modelling notations. Its tooling provides automation for all
phases in the development of a RS: data preprocessing, system
configuration for the modelling language, evaluation and selec-
tion of the best recommendation algorithm, and deployment of
the RS into a modelling tool. A video of the tool is available at
https://www.youtube.com/watch?v=VHiObfKUhS0.

CCS CONCEPTS

• Software and its engineering→ Designing software; • Infor-
mation systems→ Information retrieval.
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1 INTRODUCTION

Recommender systems (RSs) [1] are information filtering systems
that help users in choosing among a potentially large set of items.
They aim at predicting the preferences of the user to offer a person-
alised list of items that she may find of interest. RSs are ubiquitous
nowadays, being integrated in all sorts of commercial and leisure
platforms, and providing suggestions on a variety of items for dif-
ferent applications, such as music (e.g., Spotify, Pandora) and video
(e.g., Netflix, YouTube) to consume in streaming platforms, or prod-
ucts to buy in e-commerce sites (e.g., Amazon, eBay).
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Figure 1: Process of generating a RS with Droid.

Likewise, RSs are increasingly being used as software engineer-
ing assistants [15] to support the phases of the software life cycle.
For development, we can find RSs that suggest code refactorings [7],
IDE commands [10] or function invocations [13], to name a few. For
analysis and design, we are witnessing incipient efforts to support
modelling via RSs [3], with proposals of recommenders for class
diagrams [12], sequence diagrams [6] or Simulink models [17].

Building a RS by hand is costly, as it requires selecting and
configuring the most convenient recommendation algorithm for
the problem at hand – which demands specialised knowledge –
and then integrating it into a tool. This is especially challenging
when building a RS for modelling, as modelling languages can
be of different nature and target diverse domains. This fact hin-
ders the development of RSs for software paradigms that rely on
domain-specific languages (DSLs), like model-driven engineering
and lowcode approaches. Hence, a challenge in the area is to reduce
the development effort and expertise needed to create a RS for an
arbitrary DSL.

To tackle this challenge, we propose a tool called Droid. With
the goal of facilitating the creation of RSs for modelling languages,
Droid provides: (i) a DSL to configure the type of items that the
RS will suggest (e.g., attributes and methods for class diagrams,
activities for process models); (ii) an engine that automates data
preprocessing and the evaluation of the candidate recommendation
algorithms against configurable metrics; (iii) a RS generator that
deploys the selected recommendation algorithm as a service, which
heterogeneous modelling clients can integrate; and (iv) out-of-the-
box integrations with Eclipse modelling tools.

The users of Droid are RS developers, but more generally DSL
developers who are not required to have deep knowledge of RS
technologies. The RSs generated with Droid can be integrated into
heterogeneous modelling clients, which then modellers can use.

In the next section, we showcase the most salient features of
Droid using as a running example the creation of a RS of attributes,
methods and superclasses for classes in a class diagram.

2 THE DROID TOOL

Droid (https://droid-dsl.github.io/) is an Eclipse plugin automating
the construction of RSs for modelling languages, as Fig. 1 depicts.

https://www.youtube.com/watch?v=VHiObfKUhS0
https://doi.org/x.x
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The process starts by gathering the data to train and evaluate
the RS. Since Droid targets RSs for modelling languages, these data
consist of models conforming to the language meta-model. This
step is manual, while the following ones are automated.

In a second step, the RS developer uses the Droid DSL to config-
ure the RS to the modelling language, choosing the targets1 of the
recommendations (e.g., classes in a class diagram), and the items to
be recommended (e.g., class attributes). Sec. 2.1 explains the usage
of the DSL for this purpose.

In step 3, the developer can configure criteria to preprocess the
input models (e.g., removing special characters) using the DSL. This
yields a set of preprocessing configurations, which Droid evaluates
to provide the developer with an informed selection of the most
appropriate one (cf. Sec. 2.2). Then, Droid uses the cleaned data
to train a set of candidate RSs according to an initial choice of
recommendation algorithms (step 4), and evaluates such RSs over
configurable metrics (step 5). Sec. 2.3 details these two steps.

Finally, based on the metric values, the developer selects the most
suitable RS, which is automatically deployed as a REST service (cf.
Sec. 2.4). Droid also provides an out-of-the-box integration of this
recommendation service in the EMF tree editor (cf. Sec. 2.5).

2.1 Configuring a RS for a modelling language

Droid provides a DSL to configure the RS for a modelling language
and to select the data preprocessing actions, recommendation al-
gorithms and evaluation metrics. This subsection focuses on the
configuration of the language elements subject to recommendation,
and the next two subsections explain the other elements.

1 Recommender: "EducationRecommender"

2 Metamodel: "http://www.eclipse.org/uml2"

3 Repository: "/EduRecommender/models"

4
5 Target {

6 class Class {

7 item "attributes" : ownedAttribute;

8 item "methods" : ownedOperation;

9 item "super classes" : superClass; }

10 }

11
12 Identifiers {

13 class Class { pk feature name; }

14 class Type { pk feature name; }

15 class Property {

16 pk feature name;

17 pk feature type; }

18 class Operation {

19 pk feature name;

20 pk feature type; }

21 }

The listing to the right
shows the fragment of aDroid
program to configure a RS for
UML class diagrams. Lines 1–3
declare the RS name, the meta-
model of the modelling lan-
guage the RS is developed for,
and the location path of the in-
put models. Lines 5–10 specify
the modelling language items
that will be recommended. In
this case, the RS will suggest
attributes, methods and super-
classes for a target Class. Class
(line 6) is a meta-class of the
UML2 meta-model. ownedAttribute, ownedOperation and superClass

(lines 7–9) are references of the meta-class Class, from where the
items are obtained. Finally, lines 12–21 declare the attributes used
as identifiers of the target class and recommended items.

Droid offers a dedicated Eclipse editor for the DSL, shown in
Fig. 2. The editor (label 1) features code auto-completion and helps
selecting proper meta-model classes and features to configure the
RS (pop-up menu with label 2, and meta-model with label 3).

2.2 Data preprocessing

Data preprocessing is important in RSs to modify or delete irrel-
evant or misshaped information from the input training and test
1Recommendation targets are the users commonly referred in the RSs literature.

data [14]. In our context, the data are models conformant to the
modelling language meta-model. Hence, our DSL offers four pre-
processing options which can take one or more values, and Droid
tries each combination of them.

1 PreProcessing {

2 specialCharRemoval: true,false;

3 editDistanceMerging: 2,3,4;

4 minRatingsPerItem: 1,2,3;

5 minRatingsPerTarget: 1,2,3;

6 }

The listing to the right config-
ures the data preprocessing for the
example RS. The option specialChar-

Removal declares if special characters
(e.g., numbers, symbols) must be re-
moved. Line 2 enables preprocessing configurations both removing
characters (true) and keeping them (false). Line 3 specifies the edit
Levenshtein distances under which two strings are considered the
same. The distance is given by the number of single-character ed-
its required to transform one string into the other [11]. In line 4,
minRatingsPerItem filters out the items that do not appear in a mini-
mum number of targets. In this example, it excludes the attributes,
methods and superclasses appearing in less than 1, 2 or 3 classes.
Finally, in line 5, minRatingsPerTarget drops the targets lacking a
minimum number of items (in this case, classes with less than 1, 2
or 3 attributes, methods or superclasses). Overall, this specification
generates 2*3*3*3=54 preprocessing combinations.

The view at the bottom of Fig. 2 shows the results of each pre-
processing combination. Sections Data (label 4) and Target/Items

(label 5) give information of the input models provided for training
and evaluation: initial number of models, how many of them can be
loaded, howmany are well-formed models, average/minimum/max-
imum model size based on the number of model elements, average
number of targets and items (as configured in the DSL) both total
and unique (i.e., without repetitions), and data sparsity. Section
Settings (label 6) includes a combo box with all preprocessing com-
binations ordered by relevance. Selecting one displays its results in
section Pre-processing results (label 7): number of unique items re-
maining after each preprocessing action, percentage of targets and
items remaining after the preprocessing, and achieved target-item
data sparsity. Based on this information, the RS developer selects
the desired preprocessing configuration and proceeds with the RS
training.

2.3 Training and evaluation

The last aspects to configure with the DSL are the candidate recom-
mendation algorithms and the evaluation method and metrics. To
simplify this configuration, Droid generates default options, which
the developer can refine.

1 Recommendations {

2 Methods {

3 collaborativeFiltering: ItemPop,

IBCF(10,20), UBCF(10,20);

4 contentBased: CosineCB;

5 hybrid: CBIB(10,20), CBUB(10,20);

6 }

7 Split {

8 splitType: CrossValidation;

9 nFolds: 10;

10 perUser: true;

11 }

12 Evaluation {

13 metrics: Precision, Recall, F1,

NDCG, ISC, USC, MAP;

14 cutoffs: 1,5,10,15,20;

15 maxRecommendations: 50;

16 relevanceThreshold: 0.5;

17 }

18 }

The listing to the right shows
an example. Lines 2–6 select the
recommendation algorithms of in-
terest organised by type – col-
laborative filtering (CF), content-
based (CB), hybrid – along with
candidate parameters. For exam-
ple, line 3 selects the item-based
CF (IBCF) strategy with two candi-
date neighbourhood sizes: 10 and
20.Droid supports six recommen-
dation algorithms: item popular-
ity, item-based CF, user-based CF,
cosine-based CB, and item-based
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Figure 2: Droid development environment.

Figure 3: Training results view.

and user-based CBCF hybrids. Next, lines 7–11 specify how to split
the data into training and test sets. This comprises the splitting
approach (cross-validation or random), the number of folds (e.g.,
10), and the division technique (per user or per item). Finally, lines
12–18 describe the evaluation protocol. This covers the metrics to
evaluate the candidate RSs – a subset among precision, recall, F1,
MAP (mean average precision), nDCG (normalised discounted cu-
mulative gain), ISC (item space coverage), USC (user space coverage)
–, the number of cut-offs (i.e., number of most relevant items used to
calculate the metrics), the number of recommendations that the RS
will suggest, and a threshold value upon which recommendations
are deemed relevant.

To train the candidate RSs, the developer needs to choose a
preprocessing configuration, and click on button Train (label 6 in
Fig. 2). This opens the view of Fig. 3 with the metrics for all trained
RSs. The view shows the RSs whose F1 value is in the top 20% in
green, those with F1 under the median in red, and the rest in orange.
In the figure, the best performant method is user-based CF.

2.4 Deployment of the RS

The developer can double-click on the most suitable recommenda-
tion algorithm in the view of Fig. 3, and Droid deploys it into a
REST service called DroidREST. This is a generic recommendation
service which becomes customised with the selected recommender.

Client modelling tools can make POST requests to the service pass-
ing as parameters the recommender’s name, the recommendation
target (a class in our example) and the items it contains. The result
is a prioritised list of recommended items for the target (attributes,
methods and superclasses in our example).

2.5 Using the RS with EMF-based languages

Droid provides an out-of-the-box integration of the recommenda-
tion service with the tree editors generated by default for EMF-
based languages. These editors are synthesized from the lan-
guage’s Ecore meta-model via predefined JET templates (https:
//bit.ly/3DyfN0F). We overwrote those templates to extend the edi-
tors with a menu that is available on the objects of the recommen-
dation target, allows choosing the kind of recommended items, and
then shows a list of recommendations which can be incorporated
to the model.

Fig. 4 shows a generated RS for an object-oriented modelling
language. The RS is integrated within the tree editor synthesized
from the language meta-model. The figure shows the pop-up menu
activated on an object of type Klass, the selection of items of type
Attribute, and a dialog with the recommended attributes.

3 EVALUATION

The data preprocessing of Droid is a novel contribution of this
paper. Hence, we performed an offline experiment to answer the
question: “Can data preprocessing improve the recommendations

provided by Droid recommenders?”. To answer this question, we
created a RS for class diagrams using the datasets and configuration
for data splitting, recommendation methods and evaluation from
[4], also shown in the listings of Sec. 2. For space limits, we report
one dataset only, full results are available at https://bit.ly/3qTI4v1.

The left of Table 1 characterises the dataset, reporting on the
number of models, targets (i.e., classes), items (i.e., attributes, meth-
ods and superclasses), items per target, model size, and data sparsity.

https://bit.ly/3DyfN0F
https://bit.ly/3DyfN0F
https://bit.ly/3qTI4v1
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Figure 4: EMF tree editor augmented with the RS.

Table 1: Experiment: dataset characterisation and results.

Dataset Results

Num. models 1051 Metric No preproc. With preproc.

Num. targets 983 Precision 0.035 0.253
Num. items 3488 Recall 0.337 0.488
Items per target 3.31 F1 0.064 0.333
Avg. model size 89 MAP 0.184 0.426
Min. model size 3 nDCG 0.227 0.447
Max. model size 658 USC 0.830 0.294
Sparsity 0.9982 ISC 0.056 0.027

We used Droid to configure and train multiple RSs using the algo-
rithms shown in the listing of Sec. 2.3. Then, we compared the RSs
that resulted with and without preprocessing, in the former case
using the preprocessing setting of Sec. 2.2.

The right of Table 1 compares the best RS configuration without
preprocessing (user-based item-based k10), and the same configura-
tion with preprocessing. F1 increased from 6.4% to 33.3%, precision
from 3.5% to 25.3%, and recall from 33.7% to 48.8%. MAP and nDCG
also improved about 50%. Instead, ISC and USC decreased, which
was expected as there is a compromise between the precision-based
and the diversity/coverage metrics. We thus answer our question
positively: preprocessing improves the precision-based metrics,
maintaining a balance with diversity/coverage. While further exper-
iments are needed to better characterise the preprocessing effects,
the metrics show improvement w.r.t. existing hand-crafted RSs for
class diagrams, like [5], which reports a precision around 4%, or
MemoRec [8], with F1 scores around 17%.

4 RELATEDWORK

The modelling community has a growing interest in building RSs
for modelling languages [3]. Most of them target popular structural
languages like UML class diagrams or Ecore meta-models, but are
built in an ad-hoc way. For example, DoMoRe [2] suggests domain
concepts and names for new model elements, based on knowledge
bases like WordNet. Burgueño et al. [5] propose a RS for class
diagrams that extracts knowledge from text documents related to
the project to recommend. Both RSs were created manually, with
ad-hoc integration for a particular modelling language and tool.

RapMOD [12] recognises ongoing complex operations (e.g.,
pulling up common attributes), which the system completes. This
different kind of assistance complements the one Droid offers.

Droid aims at reducing the effort when developing RSs, and
other approaches also follow this line. Hermes [9] is an Eclipse
framework to build RSs by the configuration of recommendation
strategies. These must be specified manually and are limited to

work only with Eclipse modelling tools. Hence, Hermes solves
the integration with modelling tools, but the RS needs to be pro-
grammed. LEV4REC [16] is a lowcode tool to configure RSs. Similar
to Droid, users can configure aspects of the RS, like the RS algo-
rithm or the underlying libraries. For this purpose, users can select
a configuration of a feature model, which yields a model that they
can refine and use to generate code for the library of choice. The
approach does not target RSs for modelling languages, so there
is no way to customise the RS for the modelling language or to
deploy or integrate the RS with a modelling tool. Moreover, it lacks
support for exploration of the best strategies for preprocessing, or
the performance of the selected RSs.

5 CONCLUSIONS AND FUTUREWORK

We have presented Droid, a tool to automate the construction
of RSs for modelling languages. It provides a DSL to configure
the language items to be recommended, the data preprocessing
operations, the recommendation algorithms, and the evaluation
metrics. The tool reports on preprocessing results and evaluates the
chosen RSs against the selected metrics. The developer can select
the most suitable RS for the language, which is deployed as a REST
service. Droid supports off-the-shelf integration of the RS with the
Eclipse tree editor, and it can be integrated with other technologies.

We are working on providing off-the-shelf integration of the RSs
with other editors, e.g., based on Sirius or Xtext. We also plan to al-
low including other recommenders, e.g., based on neural networks,
or built ad-hoc. For this, we will profit from the Eclipse extensibility
mechanism defining suitable extension points in Droid.
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